The generator matrix 1 0 1 1 1 X^2+X 1 1 X^3+X^2 1 1 X^3+X 1 1 X^3 1 1 X^3+X^2+X 1 1 X^2 1 1 X 1 1 1 1 0 X^2+X 1 1 1 1 1 1 1 1 1 1 1 1 X^3+X^2 X^3+X X^3 X^3+X^2+X X^2 X 1 1 1 0 1 X+1 X^2+X X^2+1 1 X^3+X^2 X^3+X^2+X+1 1 X^3+X X^3+1 1 X^3 X^3+X+1 1 X^3+X^2+X X^3+X^2+1 1 X^2 X^2+X+1 1 X 1 1 0 X+1 X^2+X X^2+1 1 1 X^3+X^2 X^3+X X^3+X^2+X+1 X^3+1 X^3 X^3+X^2+X X^2 X X^3+X+1 X^3+X^2+1 X^2+X+1 1 1 1 1 1 1 1 0 X^2+X X^3+X^2 generates a code of length 51 over Z2[X]/(X^4) who´s minimum homogenous weight is 50. Homogenous weight enumerator: w(x)=1x^0+30x^50+192x^51+30x^52+1x^64+2x^70 The gray image is a linear code over GF(2) with n=408, k=8 and d=200. This code was found by Heurico 1.16 in 0.032 seconds.